Preview

Newsletter of North-Caucasus Federal University

Advanced search

GROWTH OF ALUMINUM NITRIDE THIN FILMS VIA PEALD WITH VARIOUS PLASMA EXPOSITION DURATIONS

Abstract

Films of aluminum nitride were grown by the method ofplasma-activated ALD. The impact of duration of plasma exposure stage on the growth rate, composition and microstructures was analyzed. These samples were examined by IR spectroscopy, ellipsometry and X-ray analysis. It was found that, film thickness of AlN increases by the amount not more than 0.12 nm per cycle. Furthermore, it was found that the synthesis of crystalline films of aluminum nitride is possible under plasma exposure durations longer than 20 seconds.

About the Authors

Mikhail Ambartsumov
North Caucasus Federal Univercity
Russian Federation


Alexander Altakhov
North Caucasus Federal Univercity
Russian Federation


Vitaly Tarala
North Caucasus Federal Univercity
Russian Federation


Vladimir Martens
North Caucasus Federal Univercity
Russian Federation


Sergey Lisitsyn
North Caucasus Federal Univercity
Russian Federation


References

1. Silveira E. AlN bandgap temperature dependence from its optical properties / E. Silveira, J. A. Freitas, S. B. Schujman and L. J. Schowalter // J. Cryst. Growth. 2008. Vol. 310. P. 4007-4010.

2. Junior A. F., Shanafield D. J. Thermal conductivity of polycrystalline aluminum nitride (AlN) ceramics // Ceramica. 2004. Vol. 50. № 315. P. 247-253.

3. Sowers A. T. Thin ilms of aluminium nitride and aluminum gallium nitride for cold cathode application / A. T. Sowers, J. A. Christman, M. D. Bremser, B. L. Ward and R. F. Davis // Appl. Phys. Lett. 1997. Vol. 71. № 16. P. 2289-2291.

4. Nikiforov D. K., Korzhavyi A. P. and Nikiforov K. G. Modeling of charge carrier injection and emission processes in aluminum nitride-based nanostructures // Материалы Международной научно-технической конференции INTERMATIC Proc. INTERMATIC Int. Sci. Technol. Conf. 2012. Vol. 2. P. 58-60.

5. Shi , S. C. Field emission from quasialigned aluminium nitride nanotips / S. C. Shi, C. F. Chen, H.Y. Li, J.T. Lo, Z. H. Lan, K. H. Chen and L. C. Chen // Appl. Phys. Lett. 2005. Vol. 87. № 7. P. 3109-3112.

6. Chen Z. High quality AlN grown on SiC by metalorganic chemical vapor deposition / Z. Chen, S. Newman, D. Brown, R. Chung, S. Keller, U. K. Mishra, S. P. Denbaars and S. Nakamura // Appl. Phys. Lett. 2008. № 93. P. 191-906.

7. Bosund M. GaAs surface passivation by plasma enhanced atomic layer deposited aluminum nitride / M. Bosund, P. Mattila, A. Aierken, T. Hakkarainen, H. Koskenvaara, M. Sopanen, VM. Airaksinen and H. Lipsanen // Appl. Surf. Sci. 2010. Vol. 256. № 24. P. 7434-7437.

8. Chen C. Effects of an AlN passivation layer on the microstructure and electronic properties of AlGaN/GaN heterostructures / C. Chen, D. J. Chen, Z. L. Xie, P. Han, R. Zhang, Y. D. Zheng, Z. H. Li, G. Jiao and T. S. Chen // Appl. Phys. A. 2008. Vol. 90. № 3, P. 447-449.

9. Sen H. Mechanism of PEALD grown AlN passivation for AlGaN/GaN HEMTs: compensation of interface traps by polarization charges / Huang Sen, Jiang Qimeng, Yang Shu, Tang Zhikai and K.J. Chen // Electron Device Lett., 2013, vol. 34, №. 2, P. 193 - 195.

10. Ivaldi, P. 50 nm thick AlN resonant microcantilever for gas sensing application / P. Ivaldi, J. Abergel, G. Arndt, P. Robert, P. Andreucci, H. Blanc, S. Hentz and E. Defay // Frequency Control Symposium (FCS). 2010. P. 81-84.

11. Samman A. Platinum - aluminum nitride - silicon carbide diodes as combustible gas sensors / A. Samman, S. Gebremariam, L. Rimai, X. Zhang, J. Hangas and G. W. Auner // J. Appl. Phys. 2000. № 87. P. 3101-3107.

12. Taniyasu Y., Kasu M., Makimoto T. An aluminum nitride light emitting diode with a wavelength of 210 nanometers // Nature. 2006. № 441. P. 325-328.

13. Dung-Sheng T. Solarblind photodetectors for harsh electronics / Tsai Dung-Sheng, Lien Wei-Cheng, Lien Der-Hsien, Chen Kuan-Ming, Tsai Meng-Lin, D.G. Senesky, Yu Yueh-Chung, A.P. Pisano and He Jr Hau // Sci. Rep. 2013. Vol. 4. P. 2628.

14. Kakanakova-Georgieva A., Nilsson D., Janzén E. High-quality AlN layers grown by hot-wall MOCVD at reduced temperature // J. Cryst. Growth. 2012. Vol. 338. № 1, P. 52-56.

15. Bouchkour Z. Aluminum nitride nanodots prepared by plasma enhanced chemical vapor deposition on Si(111) / Z. Bouchkour, P. Tristant, E. Thune, C. Dublanche-Tixier and C. Jaoul // Surf. Coat. Technol. 2011. № 205. P. 586-591.

16. Pat S., Kokkokoglu M. Characterization of deposited AlN thin films at various nitrogen concentrations by rf reactive sputtering // Optoelectron. Adv. Mater. Rapid Commun. 2010. Vol. 4. № 6. P. 855-858.

17. Yong Ju Lee, Sang-Won Kang. Growth of aluminum nitride thin films prepared plasma enhanced atomic layer deposition // Thin Solid Films. 2004. Vol. 446. № 2. P. 227-231.

18. Tarala V A. Growing aluminum nitride films by plasma-enhanced atomic layer deposition at low temperatures / V. A. Tarala, A. S. Altakhov, V. Ya. Martens, S. V. Lisitsyn // Journal of Physics: Conference Series. 2015. Vol. 652. P. 012034.

19. Ibäfiez, J. Far-infrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy / J. Ibäfiez, S. Hernändez, E. Alarcón-Lladó, R. Cuscó, L. Artus, S. V Novikov, C. T. Foxon, E. Calleja // J. Appl. Phys. № 104. 2008. Р. 033544


Review

For citations:


Ambartsumov M., Altakhov A., Tarala V., Martens V., Lisitsyn S. GROWTH OF ALUMINUM NITRIDE THIN FILMS VIA PEALD WITH VARIOUS PLASMA EXPOSITION DURATIONS. Newsletter of North-Caucasus Federal University. 2016;(2):7-12. (In Russ.)

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-907X (Print)