End-to-end technologies in financial controlling: corporate technology concept
https://doi.org/10.37493/2307-907X.2023.1.4
Abstract
Technology is one of the drivers of changes in the modern economy. The purpose of the study is to review the current practice of using the main groups of end-to-end technologies with certain characteristics. At the same time, unresolved and debatable issues of the conceptual and applied aspects of the development and implementation of end-to-end technologies require clarification and the development of new approaches. The research materials and methods include an analysis of the state, problems and prospects for the development of end-to-end technologies in financial management in general and in financial controlling, in particular, based on a more complete account of the features of the current stage, which necessitated the use of methods of formal logic, synthesis, induction, deduction, comparison, observation and others. The concept of digital technologies for business is proposed - corporate technologies, the essence of which is to form a system of technologies for commercial organizations that allows financial managers to receive timely and complete information about changes in key performance indicators of the company, to make forecasts and scenarios for the development of future events. The variants of adaptation of financial controlling tasks as part of financial management to the digital transformation of public relations, business processes and production are considered, an algorithm for the formation of a knowledge base based on the experience of managers and the results of their work using artificial intelligence systems is developed. The scientific novelty of the work consists in substantiating the main areas of the organization's management, on which artificial intelligence is able to exert the greatest influence in the process of digital transformation of companies' business processes and the most promising areas of digital transformation of financial controlling.
About the Authors
O. N. PakovaRussian Federation
Olga Pakova - Candidate of Economic Sciences, Associate Professor
Stavropol
Yu. A. Konopleva
Russian Federation
Yulia Konopleva - Candidate of Economic Sciences, Associate Professor.
Stavropol
A. S. Khakirov
Russian Federation
Akhmed Khakirov - Master's student of the direction of training 38.04.08 Finance and Credit of the Department of Finance and Credit
References
1. Nacional'naya programma «Cifrovaya ekonomika Rossijskoj Federacii». - URL: https://digital.gov.ru/ru/activity/directions/858/ (data obrashheniya 11.05.2022).
2. Sushhnost' i celi kontrollinga. - URL: https://studfile.net/preview/4289513/page:4/ (data obrashheniya: 11.05.2022).
3. Paradigmy cifrovoj ekonomiki: Tehnologii iskusstvennogo intellekta v finansah i fintehe (Paradigms of the Digital Economy: Artificial Intelligence Technologies in Finance and Fintech) : monografiya / pod red. M. A. Eskindarova, V I. Solov'eva. - Moskva : Kogito-Centr, 2019. - 325 s.
4. Pakova, O. N. Osobennosti i problemy realizacii «Industrii 4.0» v sovremennom bankovskom sektore (Features and problems of the implementation of «Industry 4.0» in the modern banking sector) / O. N. Pakova, YU. A. Konopleva, A. I. Deduk // Vestnik Severo-Kavkazskogo federal'nogo universiteta. -2021. - № 2 (83). - S. 98-106.
5. Nacional'naya tehnologicheskaya iniciativa. - URL: https://nti2035.ru/ (data obrashheniya: 11.05.2022).
6. Daub, I. S. Obzor metodov prognozirovaniya vremennyh ryadov s pomoshh'yu iskusstvennyh nejronnyh setej (Overview of time series forecasting methods using artificial neural networks) // StudNet. - 2020. -№ 10. - URL: https://cyberleninka.ru/article/n/obzor-metodov-prognozirovaniya-vremennyh-ryadov-s-pomoschyu-iskusstvennyh-neyronnyh-setey (data obrashheniya: 11.05.2022).
7. Labusov, M. V. Nejronnye seti dolgoj kratkosrochnoj pamyati i ih ispol'zovanie dlya modelirovaniya finansovyh vremennyh ryadov (Neural networks of long-term short-term memory and their use for modeling financial time series) // Innovacii i investicii. - 2020. - № 3. - URL: https://cyberleninka.ru/article/n/neyronnye-seti-dolgoy-kratkosrochnoy-pamyati-i-ih-ispolzovanie-dlya-modelirovaniya-finansovyh-vremennyh-ryadov (data obrashheniya: 11.05.2022).
8. Oficial'nyj sajt PAO Gazprom. - URL: http://gazsprom.ru/ (data obrashheniya 10.03.2022).
9. Oficial'nyj sajt Kira Systems. - URL: https://kirasystems.com/how-kira-works/# (data obrashheniya 10.03.2022).
10. Oficial'nyj sajt GL.ai. - URL: https://www.pwc.com/m1/en/events/socpa-2020 (data obrashheniya 10.03.2022).
11. Oficial'nyj sajt DataRobot. - URL: https://www.datarobot.com/ (data obrashheniya 10.03.2022).
12. Oficial'nyj sajt Machine Vision. - URL: https://www.machinevision.global/ (data obrashheniya 10.03.2022).
Review
For citations:
Pakova O.N., Konopleva Yu.A., Khakirov A.S. End-to-end technologies in financial controlling: corporate technology concept. Newsletter of North-Caucasus Federal University. 2023;(1):32-40. (In Russ.) https://doi.org/10.37493/2307-907X.2023.1.4