Preview

Newsletter of North-Caucasus Federal University

Advanced search

Compensation of the temperature instability of the quartz generator of the intelligent electronic device for measuring electric parameters

https://doi.org/10.37493/2307-907X.2022.5.1

Abstract

The purpose of the article is to study the possibility of compensating for the temperature instability of the quartz oscillator of an intelligent electronic device in case of loss of a synchronizing signal from a navigation satellite.An algorithm for software compensation of the temperature instability of a quartz oscillator has been developed and implemented. The author's implementation of temperature compensation of quartz oscillators is implemented as a program in the LabView FPGA environment, tested in a series of experiments using two CompactRIO controllers: a reference one and a device with software compensation. As a result of applying compensation, it was possible to linearize the dependence and reduce it from 0,65 cycles per degree Celsius to 0.04 cycles per degree Celsius for a 200 MHz generator. This compensation method does not require material costs or changes in the design of the measuring device and is ready for use in most measuring devices

About the Author

P. Zvada
Engineering Institute, NCFU
Russian Federation

Pavel Zvada, Senior Researcher, Department of Automated Electric Power Systems and Power Supply

Stavropol



References

1. IEEE S37.118.1,2-2011. Standard for Synchrophasor Measurements for Power Systems. -The Institute of Electrical and Electronics Engineers: 2011 g.

2. GOST R MEK 60122-1–2009. Rezonatory oсenivaemogo kachestva kvarсevye (Quartz resonators of the estimated quality). Ch. 1. Obshchie tehnicheskie usloviya. Vved. 2011-01-01. – Moskva : Standartinform, 2010. – 27 s.

3. WGS 84. – URL: https://ru.wikipedia.org/wiki/WGS_84 (data obrashcheniya: 18.05.2022).

4. Atomnye chasy (Atomic clocks) – URL: https://ru.wikipedia.org/wiki/%D0%90%D1%82%D0%BE%D0%BC%D0%BD%D1%8B%D0%B5_%D1%87%D0%B0%D1%81%D1%8B (data poseshcheniya 18.05.2022 g.).

5. Mihailov, S. Vliyanie mnogoluchevosti rasprostraneniya radiovoln ot navigacionnogo kosmicheskogo apparata na tochnost' opredeleniya koordinat GPS-priemnik (The effect of multipath propagation of radio waves from a navigation spacecraft on the accuracy of determining the coordinates of the GPS receiver) / S. Mihailov // Besprovodnye tehnologii. – 2006. – Nо 2(3).

6. STO 59012820.29.020.011-2016 STANDART organizacii AO «Sistemnyj operator edinoj energeticheskoj sistemy» Releinaya zashchita i avtomatika. Ustroistva sinhronizirovannyh vektornyh izmerenij. Normy i trebovaniya (Relay protection and automation. Devices of synchronized vector measurements. Norms and requirements). – Moskva, 2016.

7. Homenko, I. V. Kh76 Kvarcevye rezonatory i generatory (X76 Quartz resonators and generators): uchebnoe posobie / I. V. Homenko, A. V. Kosyh ; Minobrnauki Rossii, OmGTU. – Omsk : Izd-vo OmGTU, 2018. – 160 s. : il.

8. Smagin, A. G. P'ezoelektrichestvo kvarca i kvarcevye rezonatory (Quartz piezoelectricity and quartz resonators) / A. G. Smagin, M. I. Yaroslavskii. – Moskva : Energiya, 1970. – 488 s.

9. Baran, E. D. B24 LabVIEW FPGA. Rekonfiguriruemye izmeritel'nye i upravlyayushchie sistemy (B24 LabVIEW FPGA. Reconfigurable measuring and control systems) / E. D. Baran. – Moskva : DMK Press, 2009. – 448 s.

10. Rekomendaciya MSE-T G.810. «Terminy i opredeleniya dlya setej sinhronizacii» (Terms and definitions for synchronization networks), 08/96.


Review

For citations:


Zvada P. Compensation of the temperature instability of the quartz generator of the intelligent electronic device for measuring electric parameters. Newsletter of North-Caucasus Federal University. 2022;1(5):7-17. (In Russ.) https://doi.org/10.37493/2307-907X.2022.5.1

Views: 134


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-907X (Print)