SYNTHESIS OF NEURO-FUZZY NETWORK FOR STABILIZING TEMPERATURE IN PROCESS OF CONTINUOUS STERILIZATION
Abstract
To synthesize a neuro-fuzzy network of stabilizing temperature there is a view on the development of a base of rules for a fuzzy controller taking into account the optimal object management and training of a hybrid neural network. The optimal trajectory was accepted as the performance-optimal (detected by the maximum principle) management for a closed loop system for automatic management. There has been a transition made from the temporary area where the optimal management has been found, to the phase plane of the system, which allowed a direct use of the solution to develop a rule base for a fuzzy controller. There has been a neuro-fuzzy network (Adaptive-Network-Based Fuzzy Inference System - ANFIS) employed to develop a temperature stabilization system for sterilization with two management influences.
Keywords
нейро-нечеткая система,
стабилизация температуры,
оптимальная траекто-рия,
база правил,
обучение нейронной сети,
моделирование,
neuro-fuzzy network,
temperature stabilization,
optimal trajectory,
rule base,
neural network training,
simulation
References
1. Нейро-нечёткие сети [Электронный ресурс]. URL: http://www.allbest.ru (дата обращения: 25.12.2013)
2. Лубенцова Е. В. Алгоритм оптимального управления процессом стерилизации // Изв. вузов. Cев.-Кав. регион. Техн. науки, 2002. Спецвыпуск. С. 127.
3. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия - Телеком, 2007. 288 с.
4. MATLAB Fuzzy Logic Toolbox User’s Guide // The MathWorks, Inc. 2008. 333 p.
For citations:
Lubentsova E.V.
SYNTHESIS OF NEURO-FUZZY NETWORK FOR STABILIZING TEMPERATURE IN PROCESS OF CONTINUOUS STERILIZATION. Newsletter of North-Caucasus Federal University. 2014;(5):21-28.
(In Russ.)
Views:
86