IMPACT OF IMAGE PRE-PROCESSING ON QUALITY OF TRAINING NEURAL NETWORK FOR RECOGNITION
Abstract
About the Authors
Nikita A. LagunovRussian Federation
Oksana S. Mezentseva
Russian Federation
References
1. Лагунов Н. А., Мезенцева О. С. Анализ и экспериментальное исследование зависимости качества обучения нейронных сетей от параметров обучающих выборок // Вестник СКФУ: научный журнал. Ставрополь: Изд-во СКФУ, 2014. № 5
2. Ullman S., Vidal-Naquet M. Visual features of intermediate complexity and their use in classification // Nature Neuroscience, 2002. 490 c. [Электронный ресурс]. Режим доступа: https://courses.csail.mit.edu/6.803/pdf/ features.pdf.
3. Yann LeCun, Fu Jie Huang. Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting // IEEE Computer Society Conference on Computer Vision and Pattern Recognition (volume 2), 2004. 104 с. [Электронный ресурс]. Режим доступа:https: //courses.csail.mit.edu/6.803/pdf/features.pdf.
4. Nicolas Pinto, David Cox, James DiCarlo. Why is Real-World Visual Object Recognition Hard? // {PLoS} Computational Biology, 2008. 27 c.
Review
For citations:
Lagunov N.A., Mezentseva O.S. IMPACT OF IMAGE PRE-PROCESSING ON QUALITY OF TRAINING NEURAL NETWORK FOR RECOGNITION. Newsletter of North-Caucasus Federal University. 2015;(1):51-58. (In Russ.)