The methodology of teaching of the integration techniques of the rational functions by using partial fraction decomposition method and integration of the trigonometric functions
https://doi.org/10.37493/2307-907X.2022.1.16
Abstract
The problems introduced in the article here are the application problems from Mathematics and Engineering Sciences. All presented problems are unabridged and never published problems developed by the author for Pre-Calculus, Calculus and Differential Calculus subjects developed by the author during his teaching years at the colleges in USA. These unabridged problems are developed within the new trends in the evolutions of novelty of the syllabi in Mathematics due to the fast-pacing development of the Mathematics Sciences/ Theory and Applications. These new trends in the Theory and Application of Mathematics Sciences have been added new demands to the newly revised textbooks and corresponding syllabi for the Mathematics Courses taught at the Junior two years Colleges and Universities. There are introduced newly generated unabridged problems with the topics such as (a) Integration by partial fractions, (b) Integration of trigonometric functions and (c) Reduction formulas for the integration. These newly developed problems are reflection of the Development of Mathematical and Engineering Sciences to offer great amount of learning conclusion/sequel to those who pursue a bachelor’s degree at the universities. The problems presented in the article here are developed and restructured in terms of the newly developed techniques to solve the problem in Infinite Mathematics and Engineering sciences. Moreover, the techniques offered in the article here are more likely to get utilized in Advanced Engineering Sciences, too within the problems, which require to obtain finite numerical solutions to the Real Phenomena Natural Problems in Engineering Sciences and Applied Problems in Mathematical Physics.
About the Author
D. D. GadjievUnited States
Dr. Gadjiev Djavanshir Dzhebrailovich, Professor of Mathematics
References
1. Abdurazakov, M. M. Sozdanie klassov elementarnyh funktsij v kompleksnyh modelyah obucheniya matematike v vysshej shkole (About creation of classes of elementary functions in complex model of training in mathematics in higher education institution) : doklad / M. M. Abdurazakov, Dzh. D. Gadzhiev, A. Z. Salakhov // Sbornik materialov IV Mezhdunarodnoj konferencii «Mnogomasshtabnoe modelirovanie struktur, stroenie veshchestva, nanomaterialy i nanotekhnologii» / pod obshch. red. V. A. Panina. – Dop. tom. – Tula : Tul. gos. ped. un-t im. L. N. Tolstogo. – 342 s.
2. Straud, K. A. Inzhenernaya matematika (Engineering Mathematics) / K. A. Straud. – 6-e izd. – New York : Industrial Press INC, 2007.
3. Perminov, E. A. Ob aktual’nosti fundamentalizacii matematicheskoj podgotovki studentov pedagogicheskih napravlenij v cifrovuyu epohu (On the relevance of the fundamentalization of mathematical training of pedagogical students in the digital age) / E. A. Perminov, D. D. Gadzhiev, M. M. Abdurazakov // Obrazovatel’nyj i nauchnyj zhurnal. – 2019. – № 5(21). – S. 87–112. – DOI: 19.17853/1994-5639-2019-5-87-112.
4. Abdurazakov, M. M. Aksiologicheskaya cel’ i bazovye aspekty fundamental’noj podgotovki prepodavatelya vysshej shkoly v kontekste informatizacii professional’noj deyatel’nosti prepodavatelya SHS (Axiological, goal and substantial aspects of lifelong learning of teacher at higher school in context of informatization of his professional activity SHS) / M. M. Abdurazakov, S. V. Zenkina, O. E. Shafranova // Veb-konferenciya. – 2016. – Vol. 29. – C. 1002.
5. Monakhov, V. M. Sistemnyj podhod k metodicheskomu raskrytiyu prognosticheskogo potenciala obrazovatel’nyh standartov (System approach to the methodological disclosure of the prognostic potential of educational standards) / V. M. Monakhov, S. A. Tikhomirov // Yaroslavskij pedagogicheskij vestnik. – 2016. – № 6. – C. 117–126.
6. Armoni, M. Komp’yuternaya disciplina prokladyvaet put’ k vysshemu obazovaniyu. Izrail’skij sluchai (High school computer science paves the way for higher education: the Israeli case) / M. Armoni, Zh. GalEzer // Komp’yuternoe obrazovanie. – 2014. – Published online (opublikovano v komp’ternoi seti): 17 July 2014. – URL: http://dx.doi.org/10.1080/08993408.2014.936655.
7. Makrakis, V. Novaya rol’ podgotovlennyh uchitelej v novuyu eru : iz opyta Ob’edinennyh Arabskih Emiratov. Programma ICT (Training teachers’ new roles in the new era: experiences from the Unites Arab Emirates ICT Programme) / V. Makrakis // Trudy Vseobshchej 3-i grecheskoj konferencii po didaktike informatiki. – Korinf, Gretsiya, 2005.
8. Nadzhafi, Kh. MOOC integraciya v shkol’nye programmy (MOOC integration into secondary school courses) / Kh. Nadzhafi, R. Evans, S. Federiko // Mezhdunarodnoe obozrenie issledovanij v otkrytom i raspredelitel’nom obuchenii (IRRODL). – 2014. – Vol. 15. – № 5. – URL: http://www.irrodl.org/index.php/ irrodl/article/view/1861.
9. Arep’ev, E. I. Domnozhestvennaya realisticheskaya interpretaciya onto-gnoseologicheskih osnov matematiki (Domnozhestvennaya realistic interpretation onto-gnoseological fundamentals of mathematics) / E. I. Arep’ev // Voprosy filosofii. – 2010. – № 7. – C. 84.
10. Vladimirov, Yu. S. Metafizika (Metaphysics) / Yu. S. Vladimirov. – Moskva : Laboratoriya znaniya, 2009. – C. 514.
11. Abdurazakov, M. Razvitie potenciala i organizacionnyh umenij v cifrovoj tekhnologii v processe obshcheniya studentov (The developmental potential and the organizational functions of IT-technology in the process of socialization of students) / M. Abdurazakov, Dzh. Gadzhiev, N. Guseva, G. Tokmazov // Istoricheskaya i obshchestvennaya obrazovatel’naya ideya. – 2019. – T. 11. – № 2. – DOI: 10.17748/2075- 9908-2019-11-2-00-00. – URL: http://www.hist.-edu.ru.
12. Bruner, Zh. S. Kul’tura obrazovaniya (Culture of education) / Zh. S. Bruner. – Kembridzh : Mass Universitet Garvarda, 2006. – 224 s.
13. Kastels M. Informacionnaya era: Ekonomika, obshchestvo i kul’tura (Information Age: Economy, Society and Culture) / M. Kastels. – Moskva : Information Age: SU HSE, 2000. – 608 s.
14. Korotenkov, I. G. Informacionnaya sreda v nachal’noj shkole (Information educational environment of primary school) : uchebnik / I. G. Korotenkov. – Moskva : Akademiya IT., 2013. – S. 152.
Review
For citations:
Gadjiev D.D. The methodology of teaching of the integration techniques of the rational functions by using partial fraction decomposition method and integration of the trigonometric functions. Newsletter of North-Caucasus Federal University. 2022;1(1):138-155. (In Russ.) https://doi.org/10.37493/2307-907X.2022.1.16