Preview

Newsletter of North-Caucasus Federal University

Advanced search

RAMAN SCATTERING IN CONDENSATE PRODUCTS OF ION-BEAM AND MAGNETRON SPUTTERING OF GRAPHITE

Abstract

There has been a spectroscopic analysis of Raman scattering and an analysis of atomic-force microscopyfor disordered carbon thin films vacuum-deposited on silicon substrate using scattering of graphite target. The comparative experiments and evaluations were done under different conditions both using impulse magnetron (Ar, Ar:CH4) and ion-beam Ar+ method for graphite sputtering. There was an analysis of the informational capacity of light scattering specters and AFM-images of nanostructured and amorphous film samples. Based on the analytical data, there was a study into the synthesis conditions as well as film spectral features; there was also an evaluation done of the potential offered by spectroscopy of Raman scattering viewed as a source of data regarding carbon studies.

About the Authors

Evgheny F. Shevchenko
NCFU
Russian Federation


Igor A. Sysoev
NCFU
Russian Federation


Fedor F. Malyavin
NCFU
Russian Federation


References

1. Tamor M. A., Vassell W. C. Raman «fingerprinting» of amorphous carbon films // Journal of Applied Physics. 1994. Vol. 76. Р. 3823-3831.

2. Данишевский А. М., Сморгонская Э. А., Гордеев С. К.,. Гречинская А. В Комбинационное рассеяние света в нанопористом углероде, получаемом из карбидов кремния и титана // Физика твердого тела. 2001. Т. 43. № 1.

3. Воронин П. В., Кривченко В. А., Иткис Д. М., Семененко Д. А., Рахимов А. Т. Пленки нанокристаллического графита, синтезированные в плазме разряда постоянного тока, как материал для электрохимических конденсаторов // Письма в ЖТФ. 2012. Т. 38. № 17. С. 45-52.

4. Krivchenko V. A., Pilevsky A. A., Rakhimov A. T. et. al. Nanocrystalline graphite: Promising material for high current field emission cathodes // Journal of Applied Physics. 2010. Vol. 107. P. 014315.

5. Mani R., Sunkara M., Baldwin R. et. al. Nanocrystalline Graphite for Electrochemical Sensing // Journal of The Electrochemical Society 2005. Vol. 152 (4) P. 154-E159.

6. Itoh K., Miyahara Y., Orimo S. et. al. The local structure of hydrogen storage nanocrystalline graphite by neutron scattering // Journal of Alloys and Compounds. 2003. Vol. 356-357. P. 608-611.

7. Robertson J. DLC review // Materials Science and Engineering. 2002. Vol. 37. P. 129 - 281.

8. Ferrari A. C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000. Vol. 61/20, P.14095-14107.

9. Tuinstra F., Koenig J. L. Raman Spectrum of Graphite // J. Chem. Phys. 1970. Vol. 53. P. 1126-1131.

10. Караванский В. А., Мельник Н. Н., Заварицкая Т. Н. Получение и исследование оптических свойств пористого графита // Письма в ЖЭТФ. 2001. Т. 74. № 3. C.204-208.

11. Gleiter H. Nanostructured materials: basic concepts and microstructure // Acta mater. 2000. Vol. 48. P. 1-29.

12. Castiglioni C., Tommasini M. Raman spectroscopy of disordered and nano-structured carbon materials: the molecular approach // Opt. Pura Apl. 2007. Vol. 40 (2). P. 169-174.

13. Koos M., Fule M., Veres M., et. al. Multi-band structure of amorphous carbon luminescence // Diamond and Related Materials. 2002. Vol. 11. P. 1115-1118.


Review

For citations:


Shevchenko E.F., Sysoev I.A., Malyavin F.F. RAMAN SCATTERING IN CONDENSATE PRODUCTS OF ION-BEAM AND MAGNETRON SPUTTERING OF GRAPHITE. Newsletter of North-Caucasus Federal University. 2014;(6):85-89. (In Russ.)

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-907X (Print)