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Аннотация.  Введение. В работе выполнен анализ результатов экспериментальных исследований несимметричной и нелинейной тяговой 

нагрузки (НТНГ) на подстанциях внешней системы электроснабжения напряжением 110 кВ. Определены области, характеризующие степень 

несимметрии в зависимости от тока прямой последовательности (ТПП), которые сопоставлены с подобными областями, полученными при матема-

тическом исследовании. Нелинейность тяговой нагрузки из-за наличия статических преобразователей энергии порождает в основном нечетные 
высшие гармонические составляющие, оказывающие влияние на функционирование релейной защиты (РЗ). Получены зависимости максимальных 

значений 3, 5, 7 гармонических составляющих фазных токов, что позволит их использовать при выборе параметров измерительных органов РЗ и 

обосновании требований к фильтрации сигналов тока. Цель. Исследование режимов СТЭ для уточнения методик расчета параметров срабатывания 
измерительных органов релейной защиты (РЗ) и разработки новых алгоритмов функционирования микропроцессорных РЗ. Материалы и методы. 

Исследование построено на анализе режимов электрических сетей внешнего и тягового электроснабжения. Результаты и обсуждение. Определе-

ны области возможных несимметричных тяговых нагрузок в зависимости от степени их несимметрии. Получены математические зависимости 
максимальных относительных значений токов нечетных гармонических составляющих от фазных токов. Показана необходимость учета составля-

ющих тока обратной последовательности (ТОП), высших гармонических составляющих, обусловленных нелинейной тяговой нагрузкой, при выбо-

ре параметров измерительных органов (ИО) РЗ. Заключение. Отмечено достижение отношения тока обратной последовательности к ТПП до 100 % 
не только при холостом ходе одного из плеч тягового трансформатора, но и с загрузкой обеих плеч данного трансформатора при различных аргу-

ментах нагрузки. Отмечено существенное значение нечетных гармонических составляющих в фазных токах тяговых трансформаторов, достигаю-

щих 6–14 % от максимального (номинального) тока тягового трансформатора. 
Ключевые слова: несимметричная и нелинейная тяговая нагрузка, ток прямой и обратной последовательностей, высшие гармони-

ческие составляющие токов, релейная защита 
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Abstract. Introduction. The paper analyzes the results of experimental studies of asymmetrical and nonlinear traction loads (ANTL) at substations of 

a 110 kV external power supply system. Regions characterizing the degree of asymmetry depending on the positive sequence current (PSC) are constructed and 

compared with similar regions obtained through mathematical analysis. Traction load nonlinearity due to the presence of static energy converters primarily 
generates odd higher harmonic components, which affect the operation of relay protection (RP). Dependences for the maximum values of 3rd, 5th, and 7th 

harmonic components of phase currents are obtained, which will allow use in selecting the parameters of RP measuring units and basing for the current signal 

filtering requirements. Goal. The study of STE modes to refine the methods for calculating the response parameters of relay protection measuring devices (RP) 
and the development of new algorithms for the operation of microprocessor RS. Materials and methods. The study is based on the analysis of the modes of 

external and traction power supply electrical grids. Results and discussion. Regions of possible asymmetric traction loads are constructed depending on the 

degree of their asymmetry. Mathematical relationships between the maximum relative values of odd harmonic currents and phase currents are obtained. The 
need to consider the components of the traction load due to the traction load factor and higher harmonic components when selecting the parameters of the pro-

tection relay is demonstrated. Conclusion. The ratio of the negative sequence current (NSC) to the TPP has been shown to reach 100%, not only when shoulder 

of the traction transformer is idle, but also when both shoulder of the transformer are loaded under various load conditions. Odd harmonic components in the 
phase currents of traction transformers are significant, reaching 6–14 % of the maximum (nominal) current of the traction transformer. 
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Введение / Introduction. Одними из мощных потребителей электрических сетей напряжением 

110–220 кВ являются системы тягового электроснабжения (СТЭ) железных дорог (ЖД). При этом 

тяговые трансформаторы, как правило, мощностью 40 МВА и реже 25 МВА, питающие несиммет-

ричную тяговую нагрузку, подключаются непосредственно к шинам подстанций 110–220 кВ опорных 

подстанций и / или к шинам промежуточных (ответвительных) подстанций. Режимы работы систем 

внешнего электроснабжения (СВЭ), т. е. электрических распределительных сетей 110–220 кВ и СТЭ 

оказывают друг на друга существенное влияние [1–3], что обусловлено осуществлением питания 

электровозов по однофазной схеме (см. рис. 1). 
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Рис. 1. Поясняющая схема включения тяговых подстанций /  

Fig. 1. Explanatory diagram of switching on traction substations 

 

Обмотки стороны высшего напряжения соединяются в «звезду», а на стороне низшего напря-

жения – в «треугольник». Причем фаза С «треугольника» всегда соединяется с рельсом, а для сим-

метрирования нагрузок фаз электрической сети слева и справа на подстанциях изменяется фазировка 
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стороны трансформатора «звезда», которая должна дать эффект симметрирования со стороны опор-

ных подстанций при одинаковой нагрузке на всех дистанциях железнодорожного пути [4, 5]. Для ис-

ключения появления уравнительных токов обязательно сфазированное включение фаз соседних тяго-

вых подстанций. В табл. 1 приведен алгоритм подключения тяговых подстанций, что получило отра-

жение на рис. 1. 

Таблица1  / Table 1 

Алгоритм подключения фаз трансформатора тяговой подстанции к фазам линии на стороне 

ВН, при заданной схеме подключения ТП, расположенной по центру / The algorithm  

for connecting the phases of the transformer of a traction substation to the phases of the line  

on the side of the overhead line, with a given TP connection scheme located in the center 

№ п.п. Подстанция слева Подстанция по центру Подстанция справа 

Фаза ВЛ А В С А В С А В С 

Тяговая ПС 

по центру 
Подключение фаз трансформатора тяговой подстанции 

ТП1 В А С А В С А С В 

ТП2 А В С А С В С А В 

ТП3 А С В С А В С В А 

ТП4 С А В С В А В С А 

ТП5 С В А В С А В А С 

ТП6 В С А В А С А В С 

 

На каждой подстанции установлены нейтральные вставки (НВ), исключающие междуфазное 

КЗ при переходе электровоза с одной межподстанционной зоны на другую. Некоторый эффект сим-

метрирования также создается за счет наличия на подстанции симметричной общепромышленной 

нагрузки, питающейся от третичной обмотки тягового трансформатора. Полная симметрия со сторо-

ны питающих подстанций в идеальном случае достигается в схеме так называемого «полного винта» 

(подключение трех подстанций при радиальной схеме питания или шести подстанций при двухсто-

роннем питании). Кроме того, нагрузка тяговой подстанции является не только несимметричной, но и 

нелинейной из-за наличия в электровозе статических преобразователей, позволяющих регулировать 

его мощность. 

Указанные особенности выполнения СТЭ порождают ряд проблем качества электроэнергии, а 

также выполнения релейной защиты СВЭ напряжением 110–220 кВ [6–8], что актуализирует вопрос 

исследования режимов СТЭ для уточнения методик расчета параметров срабатывания измеритель-

ных органов релейной защиты (РЗ) и разработки новых алгоритмов функционирования микропроцес-

сорных РЗ, минимизирующих влияние высших гармонических составляющих и несимметрии токов и 

напряжений не только в аварийных, но и нормальных нагрузочных режимах, являющихся зачастую 

расчетными для определения параметров РЗ. 

Материалы и методы исследований / Materials and methods of research. Экспериментальные ис-

следования проводились на тяговых подстанциях, подключенных к электрической сети ПАО Россети 

Юг» [9] (рис. 2), питающей тяговые подстанции C, E, D. Контактная электрическая сеть, обеспечивающая 

питание электропоездов, состоит из четырех участков, разделенных нейтральными вставками NV1, NV2, 

NV3 (рис. 2). Два средних участка контактной сети получают двустороннее питание от тяговых подстан-

ций. Два крайних участка обеспечивают питание контактной сети с одной стороны от данной сети, а с 

другой стороны – от смежной электрической сети. Измерения напряжений и токов проводились на сто-

роне высшего напряжения 110 кВ силового трансформатора с тяговой нагрузкой на стороне 27,5 кВ и при 

отключенной стороне низшего напряжения 10 кВ, питающей симметричную общепромышленную 

нагрузку, с усреднением на интервале в 1 с в течение около 30 мин. Максимальное значение фазных то-

ков достигало значений 140 А на стороне высшего напряжения. 

Оценка степени несимметрии оценивается коэффициентом отражающим отношение токов 

обратной (ТОП)  и прямой (ТПП)  последовательностей на стороне высшего напряжения транс-

форматора тяговой подстанции (ТПС), как правило, определенным отношением фазных токов левого 
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 и правого  плеч , питающих соответствующие межподстанционные зоны же-

лезной дороги, а также отношением величины тока общепромышленной нагрузки  к току правого 

плеча  тяговой нагрузки  Общее выражение для определения данного коэффициента 

при равенстве аргументов токов левого и правого плеч можно представить выражением, приведен-

ным в [2]: 

.                                     (1) 

 
Рис. 2. Поясняющая схема электрических сетей внешнего и тягового электроснабжения /  

Fig. 2. Explanatory diagram of electrical networks of external and traction power supply 

 

Анализ выражения (1) показывает, что максимальное значение коэффициента А12 может до-

стигать 100 % в случае холостого хода на одном из плеч, а минимальное значение составляет 50 % 

при равенстве токов плеч и их аргументов и отсутствии общепромышленной нагрузки. Наличие об-

щепромышленной нагрузки приводит к снижению этого показателя. 

При проведении данного эксперимента измерения токов производилось на стороне высшего 

напряжения (ВН) и поэтому графики степени несимметрии А12 построены в зависимости от относи-

тельного тока прямой последовательности (рис. 3а) на стороне ВН. За базу принято номинальное 

значение тока трансформатора мощностью 40 МВА стороны ВН 110 кВ, равное 210 А. 
 

       
а                                                               б 

Рис. 3. Зависимости коэффициента несимметрии токов трансформатора, питающего тяговую нагрузку:  

а – экспериментальные данные; б – расчетные данные / Fig. 3. Dependences of the current asymmetry coefficient  

of the transformer feeding the traction load: a – experimental data; b – calculated data 
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На данном графике (рис. 3а) можно выделить несколько областей 1–4, которые требуют пояс-

нения и дополнительного исследования. Область 1 вблизи значения 0,5 (50 %) свидетельствует о ра-

венстве токов плеч на стороне 27,5 кВ; область 3, где  – отражает неравные значения 

токов левого и правого плеча тяговой нагрузки; область 4  – отражает режим выдачи 

мощности электровозом во внешнюю сеть, что подтверждено графиком мощности, зафиксированно-

го измерительным прибором анализатором качества электроэнергии «Fluke 435». Подобный эффект 

может также возникать и при перетоке мощности между тяговыми подстанциями по сети СТЭ. От-

дельного пояснения требует область 2, где , т. к. при проведении эксперимента общепро-

мышленная нагрузка на обмотке 10 кВ тягового трансформатора отсутствовала и не могла влиять на 

снижение коэффициента А12. При этом возможен эффект снижения несимметрии от симметричного 

транзита мощности по линии электропередачи внешнего электроснабжения. 

Рассмотрим распределение токов нагрузки в обмотках трансформатора на стороне 27,5 кВ (об-

мотки трансформатора включены по схеме треугольника) (рис. 4) и во внешней сети тягового элек-

троснабжения. 

  
Рис. 4. Поясняющая схем для определения токов во вторичной обмотке тягового трансформатора и во внешней 

сети тягового электроснабжения / Fig. 4. Explanatory diagrams for determining currents in the secondary winding of 

a traction transformer and in the external traction power supply network 

 

На рис. 4 приняты следующие обозначения: , – сопротивления нагрузки левого и правого 

плеч соответственно с учетом собственного тяговой нагрузки  и  – сопротивления обще-

промышленной нагрузки;  – сопротивление источника питания (трансформатора); – кон-

турные токи (рис.4);   – токи фаз А, В, С вторичной и первичной обмо-

ток; ,  – междуфазные ЭДС вторичных обмоток трансформатора. 

При этом можно записать систему уравнений: 

                                                          (2) 

                                                            (3) 

                          (4) 

                                          (5) 

                                                          (6) 

                                                               (7) 

                                                                     (8) 

                                                                     (9) 

                                                                    (10) 
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                                                                     (11),  

                                                                     (12), 

                                                                        (13) 

Токи прямой и обратной  последовательностей сформированы из токов фаз сторон 

трансформатора вторичной и первичной обмоток. Это позволяет получить области существования 

коэффициента А12, что получило отражение на рис. 3б. На данных графиках отмечены области 1, 2, 3 

(подобные областям 1, 2, 3 на рис. 3а) и 5, характеризующие влияние как симметричной общепро-

мышленной нагрузки, так и тяговой нагрузки с неравными аргументами токов левого и правого плеч. 

Это позволяет объяснить, что принятое допущение равенства аргументов тяговой нагрузки имеет 

частный характер, при котором А12 = 0,5, а в реальных условиях данное соотношение выполняется 

только в отдельные моменты времени при прохождении электровозами межподстанционных зон. Та-

ким образом, неравенство аргументов токов левого и правого плеч приводит к уменьшению данного 

коэффициента, т. е. существование области 2 со значениями  Также наличие симметричной 

общепромышленной нагрузки приводит к уменьшению коэффициента А12.  

Таким образом, максимальное значение коэффициента несимметрии А12 может достигать 100 

%, а из-за возможного режима рекуперации и более, что необходимо учитывать при выборе парамет-

ров измерительных органов прямой и обратной последовательностей, и особенно ИО РЗ, контроли-

рующих их приращения. В ряде случаев это приведет к их загрублению, но при этом не потребуется 

их выведения из работы, что предполагают существующие методики выбора параметров пусковых 

органов дифференциально-фазных и высокочастотных защит с блокирующими (разрешающими) 

сигналами [10]. 

Тяговая нагрузка (ТНГ) характеризуется не только несимметрией и нестационарностью, но и 

нелинейностью, обусловленной работой управляемых преобразователей энергии электровоза. Можно 

отметить для подстанций D и E (рис. 2) значительный уровень 3-й, 5-й и 7-й гармоник, которые в от-

дельные интервалы времени достигают 6–14 % от максимального значения основной гармоники на 

наблюдаемом интервале (номинальному току тягового трансформатора), 60 % и 50 % по отношению 

к текущему значению при малых значениях ТПП. Четные гармоники представлены слабо, на уровне 

нескольких процентов.  

На рис. 5 приведены наблюдаемые области токов 1 3-й и 5-й гармоник фазы А, содержание ко-

торых составляет 6 % и 10 % соответственно. При этом за базу принято максимальное значение тока 

прямой последовательности. Зеленой линией 2 на рис. 5 обозначено максимальное значение токов во 

время эксперимента. Так как для релейной защиты принята отстройка от максимального возможного 

значения параметра, то граничной линией выбора возможного значения порога является линия, обо-

значенная синим цветом 3. 
 

     
а                                                                    б 

Рис. 5. Области токов высших гармонических составляющих (а – третья гармоника, б – пятая гармоника)  

фазы А в зависимости от тока этой же фазы / Fig. 5. Areas of currents of higher harmonic components (a – the third 

harmonic, b – the fifth harmonic) of phase A depending on the current of the same phase 
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Для всех остальных фаз построены зависимости максимальных значений токов гармонических 

составляющих 3-й, 5-й, 7-й гармоник, которые приведены на рис. 6. Максимальное значение дости-

гают уровни 3-й гармоники (14 %), сопоставимы с ними уровни 5-й гармоники (12 %) и на третьем 

месте находятся показатели 7-й гармоники (8 %). На рис. 6 приняты обозначения: желтый цвет – фаза 

А, зеленый цвет – фаза В, красный цвет – фаза С, черный цвет – результирующая зависимость, охва-

тывающая все три зависимости. Результирующая зависимость является расчетной для выбора пара-

метров измерительных органов и определения требований к фильтрам высших гармонических со-

ставляющих и фильтру основной гармоники. 

 
    а                                          б                                            в 

Рис. 6. Зависимости максимальных значений высших гармонических составляющих (а – третья гармоника, б – пятая 

гармоника, в – седьмая гармоника) от фазного тока / Fig. 6. Dependences of the maximum values of the higher harmonic 

components (a – the third harmonic, b – the fifth harmonic, c – the seventh harmonic) on the phase current 

 

В табл. 2 приведены математические зависимости гармонических составляющих токов, отра-

женных на рис. 6.  

Таблица 2 / Table 2 

Математические описания максимальных значений гармонических составляющих токов фаз  

и результирующих зависимостей от тока I / Mathematical descriptions of the maximum values of 

the harmonic components of the phase currents and the resulting dependencies on the current I 

Фаза 3-я гармоника тока 5-я гармоника тока 7-я гармоника тока 

А    
В    
С    

Результирующая 

зависимость    

 

В экспериментах зафиксированы существенные значения напряжения обратной последователь-

ности до 3,75 %, что необходимо учитывать при выборе параметров измерительных органов напря-

жения обратной последовательности высокочастотных защит воздушных линий. 

Заключение / Conclusion. При проведении экспериментальных исследований на ТПС 110 кВ 

потребляемая полная мощность на подстанции составляла не более (40–55) % от номинальной мощ-

ности трансформатора, что обусловлено графиком движения поездов. Потребляемая мощность по 

каждой фазе отличалась в 2–3 раза, что вызывало появление значений токов обратной последова-

тельности на стороне 110 кВ ТПС до (50–60) А. Выявлено, что коэффициент несимметрии А12 дости-

гает 100 % не только при холостом ходе одного из плеч тягового трансформатора, но и при неравен-

стве аргументов токов тяговой нагрузки. Кратковременно возможно повышение степени несиммет-

рии более 100 % из-за рекуперации энергии электровозом. При большей загруженности тягового 

трансформатора последует увеличение значения тока обратной последовательности, что требует уче-

та при выборе параметров измерительных органов (ИО) ТОП (ИО приращений ТОП). 

Токи, потребляемые электровозами, существенно несинусоидальны, содержат значительные 

уровни нечетных гармоник, начиная с 3-й и выше, что обусловлено применением на электровозах 

коллекторных тяговых электродвигателей (ТЭД), с возможностью регулирования мощности ТЭД 

управляемыми выпрямителями. В результате исследований выявлено, что 3-я гармоника в фазах А и 
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В, питающих контактную сеть электровозов достигает (10–14) %, 5-я гармоника (10–12) %, а в фазе С 

(подключенной к заземленному рельсу) уровень данных гармонических составляющих достигает: 3-я 

и 5-я гармоника – (8–10) % (за базу принято максимальное значение ТПП). При малых значениях 

ТПП отмечается рост содержания 3-й, 5-й, 7-й гармоник по отношению к наблюдаемому ТПП.  

Напряжение обратной последовательности составляет (3–4) % от напряжения прямой последо-

вательности при указанной выше максимальной нагрузке тягового трансформатора. 
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