

ФИЗИКА И МАТЕМАТИКА

УДК 621.396

Богомаз Александр Викторович

МОДЕЛИРОВАНИЕ СТАТИСТИЧЕСКИХ ПОГРЕШНОСТЕЙ ОЦЕНОК ИОНОСФЕРНЫХ ПАРАМЕТРОВ, ПОЛУЧАЕМЫХ С ПОМОЩЬЮ МЕТОДА НЕКОГЕРЕНТНОГО РАССЕЯНИЯ

В статье представлен алгоритм оценивания величины статистических погрешностей, возникающих при определении температуры и ионного состава ионосферной плазмы, а также проведен анализ результатов моделирования.

Ключевые слова: метод некогерентного рассеяния, ионосфера, ионный состав, статистические погрешности, моделирование, алгоритм.

Bogomaz Aleksandr V.

SIMULATION OF RANDOM ERRORS IN IONOSPHERIC PARAMETERS ESTIMATION OBTAINED BY MEANS OF INCOHERENT SCATTERING

Algorithm of estimation of random errors in the obtained temperature and ion composition of ionospheric plasma is presented in the paper. The results of simulation based on the developed algorithm are analyzed.

Key words: incoherent scattering, ionosphere, ion composition, random errors, simulation, algorithm.

Метод некогерентного рассеяния (HP) радиоволн считается наиболее информативным методом изучения ионосферы и позволяет получить оценки таких параметров ионосферной плазмы, как температуры электронов и ионов, относительное содержание ионов различных сортов, концентрация электронов, скорость движения, как ниже, так и выше максимума ионизации [1].

Несмотря на то, что метод HP используется для исследования ионосферы уже более 50 лет, оценивание погрешностей результатов решения обратной задачи рассеяния для различных высотных областей ионосферы, гелиогеофизических условий, помеховой обстановки, сезона и времени суток, режимов работы радара и алгоритмов обработки HP сигналов остаётся актуальной. Анализ литературы показывает, что путём анализа экспериментальных данных, полученных на радаре HP, можно получить лишь грубую оценку погрешностей определения параметров плазмы, а более точное оценивание возможно только с применением теоретического моделирования [2–4].

В данной статье нами представлены результаты моделирования статистических погрешностей оценок параметров ионосферной плазмы, полученных с помощью метода НР, и установлены зависимости доверительных интервалов от отношения сигнал/шум и значений параметров.

Алгоримм моделирования. Моделирование статистических погрешностей производилось в четыре этапа [5]: синтез смеси НР сигнала и шума с заданным значением отношения сигнал/шум; получение АКФ НР сигнала из смеси НР сигнала и шума; решение обратной задачи рассеяния; анализ результатов решения обратной задачи рассеяния.

Синтез смеси НР сигнала и шума с заданным значением отношения сигнал/шум на первом этапе моделирования производился по формуле [6]:

$$S^{signal+noise}(t) = k \cdot \sum_{i=1}^{N} \left[A_i^{signal} \sin(\omega_i t + \theta_i) \right] + \sum_{j=1}^{M} \left[A_j^{noise} \sin(\omega_j t + \theta_j) \right], \tag{1}$$

где A_i^{signal} и A_j^{noise} — амплитуды, связанные с составляющими энергетического спектра HP сигнала W_i^{signal} и шума W_j^{noise} зависимостями вида $A = \sqrt{W}$; ω_i и ω_j — круговые частоты; θ_i и θ_j — случайные начальные фазы, равномерно распределённые на интервале $[-\pi;\pi]$; N и M — количество спектральных составляющих HP сигнала и шума соответственно; k — регулирующий коэффициент, которым устанавливается необходимое значение отношения сигнал/шум q.

Коэффициент k рассчитывается до синтеза смеси НР сигнала и шума по формуле

$$k = \sqrt{q} \sqrt{\sum_{j=1}^{M} \left(A_j^{noise}\right)^2 / \sum_{i=1}^{N} \left(A_i^{signal}\right)^2}.$$

Для моделирования был выбран случай окрашенного шума — в качестве амплитуд A_j^{noise} была взята амплитудно-частотная характеристика одного из фильтров нижних частот (ФНЧ) радиоприёмного устройства харьковского радара НР. Число гармоник M было выбрано равным 3 000, что

при интервале между гармониками $\Delta f = \frac{\omega_{j+1} - \omega_j}{2\pi} = 5$ Γ ц является достаточным для перекрытия частотного диапазона, ограниченного фильтром.

Спектральные составляющие HP сигнала W_i^{signal} рассчитывались с использованием формулы для произвольного числа типов ионов, полученной Dougherty J.P. и Farley D.T. [7]. Число гармоник N и интервал между ними выбраны такими же, как и для шума. При этом обеспечивается необходимое перекрытие спектра шириной $15~\rm k\Gamma u$, что при длине излучаемой передатчиком радара волны $\lambda=1.9~\rm m$ достаточно для описания наиболее широкого реально существующего спектра сигнала, некогерентно рассеянного ионосферой [8]. Для упрощения моделирования эффекты прохождения HP сигнала через ФНЧ не рассматривались.

Некоррелированность значений смеси HP сигнала и шума в разных реализациях обеспечивалась благодаря некоррелированности начальных фаз θ путём сброса начального значения генератора псевдослучайных чисел.

Временно́й интервал между отсчётами сигнала смеси был выбран равным $\Delta t = 30.555$ мкс , т. е. таким же, как интервал дискретизации аналого-цифрового преобразования в системе обработки харьковского радара HP.

Целью второго этапа моделирования было получение автокорреляционной функции (АКФ) НР сигнала

Для получения АКФ HP сигнала предварительно по формуле (1) рассчитывались реализации шума (при k=0).

По формуле $R^{signal+noise}(\tau) = S^{signal+noise}(t) \cdot S^{signal+noise}(t+\tau)$ производился расчёт АКФ смеси НР сигнала и шума. Автокорреляционные функции усреднялись по 1464 реализациям (что соответствует 1-минутному накоплению АКФ принятого радаром сигнала, которое обычно производится в системе первичной обработки данных харьковского радара НР). По аналогичной формуле рассчитывалась АКФ шума $R^{noise}(\tau)$. Значение задержки τ связано непосредственно со временем дискретизации:

$$\Delta t$$
 ($\tau = i\Delta t$, где $i = 0, 1, ... 18$).

Автокорреляционные функции шума усреднялась по 43 920 реализациям, что соответствует реальным условиям измерений. После накопления из АКФ смеси НР сигнала и шума вычиталась АКФ шума. Результатом данной операции является АКФ НР сигнала, которая в дальнейшем усреднялась по 15 и 60 реализациям (соответствует 15- и 60-минутному накоплению АКФ НР сигнала в системе обработки данных радара).

Третий этап моделирования – решение обратной задачи рассеяния, которое состоит в многократном сравнении смоделированных АКФ НР сигнала с рассчитанными согласно теории некогерентного рассеяния АКФ (обратная задача для некогерентного рассеяния аналитического решения не имеет). Параметры, которые использовались при расчёте теоретической АКФ, наилучшим образом согласующейся по методу наименьших квадратов со смоделированной АКФ, считаются оценками параметров ионосферной плазмы [4, 9].

Поиск нужной теоретической АКФ производился с использованием предварительно рассчитанной библиотеки нормированных АКФ (НАКФ). Библиотека рассчитана для следующих значений параметров плазмы: температуры электронов T_e и температур ионов T_i — от 500 до 4000 K с шагом

 $10~{\rm K},$ относительная концентрация ионов водорода $N({
m H}^+)/N$ — от 0 до 1 (т. е. от 0 до 100 %) с ша-

гом 0.005 (относительная концентрация ионов кислорода $N(O^+)/N = 1 - N(H^+)/N$). Для сокращения времени поиска вместо полного перебора АКФ использовался метод последовательных приближений. Шаги и интервалы поиска для четырёх приближений приведены в табл. 1. Начиная со второго приближения, интервалы поиска указаны по отношению к оценке параметра на предыдущем приближении.

Параметры поиска решений обратной задачи рассеяния

Таблица 1

	$N_{\underline{0}}$	Интервалы для	Шаг по	Интервалы для <i>N</i> (H ⁺)/ <i>N</i>	Шаг по
		T_i и T_e , K	T_i и T_e , К	интервалы для м(н)/м	$N(\mathrm{H}^+)/N$
	1	500 – 4000	100	0–1	0,05
	2	±200	50	±0,1	0,025
Ī	3	±100	20	±0,05	0,01
	4	±40	10	±0.02	0.005

Значения шагов являются квазиоптимальными с учётом нелинейного характера зависимости АКФ HP сигнала от значений параметров ионосферной плазмы [10].

На последнем этапе проводился статистический анализ полученных оценок параметров ионосферной плазмы. По выборке оценок для одинаковых условий производился расчёт математического ожидания, среднеквадратического отклонения и доверительных интервалов математического ожидания.

Доверительные интервалы оценок каждого параметра a (т.е. T_i , T_e и $N(\mathrm{H}^+)/N$) рассчитывались по формуле [11]:

$$a - t_{\alpha} \frac{\sigma}{\sqrt{n}} \le a \le a + t_{\alpha} \frac{\sigma}{\sqrt{n}},$$
 (2)

где $\sigma = \frac{1}{n} \sum_{i=1}^{n} a_i$ – оценка математического ожидания; $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (a_i - \overline{a})^2}$ – среднеквадрати-

ческое отклонение; n – размер выборки; t_{α} – коэффициент Стьюдента.

Исходные данные для моделирования. Моделирование производилось для плазмы, представленной двумя ионами — атомарного кислорода O^+ и атомарного водорода H^+ . Температуры T_i и T_e изменялись от 1 000 до 3 000 К с шагом 500 К с выполнением физически обоснованного условия $T_e \geq T_i$. Относительное содержание ионов водорода H^+ изменялось от 0 до 1 с шагом 0,2. Вид смоделированных АКФ НР сигнала для разных состояний плазмы показан на рис. 1. Значения АКФ указаны в относительных единицах (о. е.).

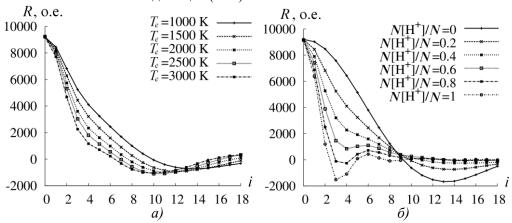


Рис. 1. АКФ НР сигнала для различных значений параметров ионосферной плазмы: $a-T_i=1000~{\rm K},$ $N({\rm H}^+)/N=0.2;~\delta-T_i=1000~{\rm K},~T_e=1000~{\rm K}$

Таким образом, в качестве исходных данных для моделирования было выбрано 90 случаев, соответствующих различным состояниям ионосферной плазмы.

Кроме того, для каждого состояния при формировании смеси HP сигнала и шума задавалось три значения отношения сигнал/шум q - 10, 1 и 0,1.

Для проведения статистического анализа для перечисленных случаев были смоделированы 225 АКФ НР сигнала, усреднённые по 1464 реализациям (1-минутное накопление АКФ НР сигнала в системе обработки данных радара). Количество АКФ, усреднённых дополнительно по 15 и 60 реализациям, составило 15 и 3 соответственно. Коэффициенты Стьюдента t_{α} для приведенных размеров выборок n и доверительной вероятности P=0.67 сведены в табл. 2.

Таблица 2 Коэффициенты Стьюдента для используемых размеров выборок

n	t_{lpha}
3	0,486
15	0,449
225	0,440

На рис. 2 представлены НАКФ $r(\tau) = R(\tau)/R(0)$ НР сигнала, смоделированные для одинаковых условий. Из рисунка видно, что, несмотря на сходный характер функций, значения $r(\tau)$ сильно различаются. Следовательно, закономерно будут возникать погрешности оценок параметров плазмы.

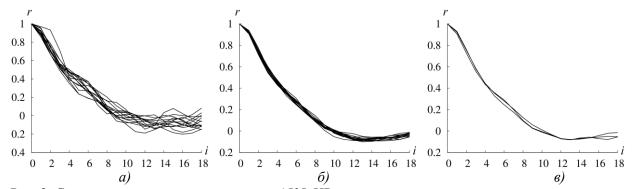
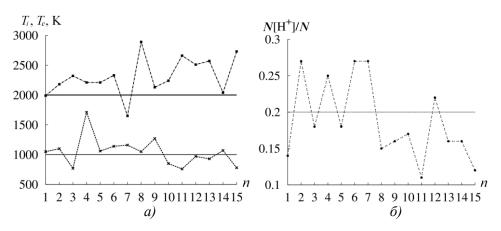



Рис. 2. Смоделированные нормированные АКФ НР сигнала, соответствующие времени накопления 1 мин (a), 15 мин (b), 60 мин (b)

Анализ результатов моделирования. Результатами решения обратной задачи рассеяния в проведенном моделировании являются оценки ионосферных параметров. Примеры оценок показаны на рис. 3.

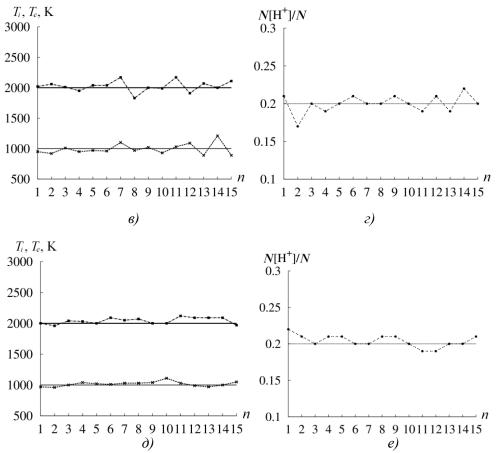


Рис. 3. Оценки параметров при отношении сигнал шум, равном 0,1 (a, δ) , 1 (a, ϵ) и 10 (d, e). Истинные значения температур – Ti = 1 000 K, Te = 2 000 K, относительное содержание ионов водорода N(H+)/N = 0,2. Усреднение АКФ сигнала соответствует времени накопления 15 мин

Примеры рассчитанных по полученным оценкам параметров с использованием формулы (2) доверительных интервалов для разных значений отношения сигнал/шум показаны на рис. 4.

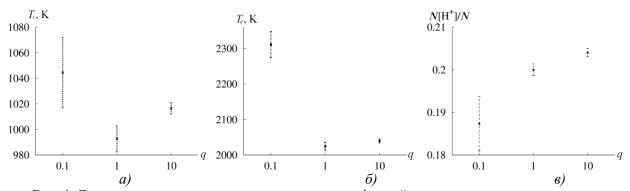


Рис. 4. Доверительные интервалы параметров ионосферной плазмы, полученные при разном значении отношения сигнал/шум. Истинные значения температур — $T_i = 1\,000\,\mathrm{K},\,T_e = 2\,000\,\mathrm{K},$ относительное содержание ионов водорода $N(\mathrm{H}^+)/N = 0,2$. Усреднение АКФ сигнала соответствует времени накопления 15 мин

Как и следовало ожидать, разброс оценок увеличивается при уменьшении отношения сигнал/шум. Также можно заметить, что с уменьшением отношения сигнал/шум увеличивается смещение оценок.

Более интересным является исследование зависимости величины погрешностей определения параметров от истинных значений параметров ионосферной плазмы.

Так, на рис. 5 показана зависимость погрешностей от относительного содержания ионов водорода и отношения температур для двух значений температуры ионов. Такая зависимость была выбрана для анализа из-за того, что в ионосфере увеличение относительного содержания ионов H+ происходит с ростом высоты, а в ночное время и – в дневное.

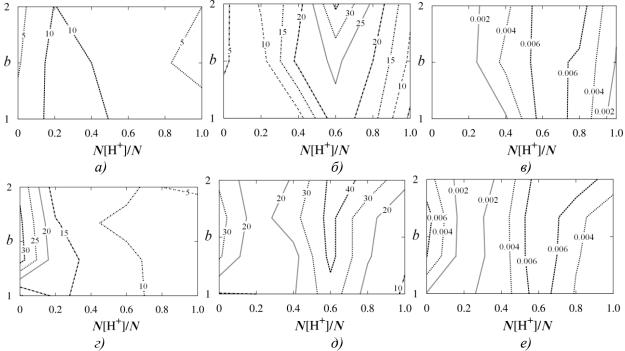


Рис. 5. Зависимости погрешностей параметров ионосферной плазмы $(a, z - T_i; \delta, \partial - T_e; e, e - N(H^+)/N)$ от относительного содержания ионов H^+ и отношения температур b. $T_i = 1\,000\,\mathrm{K}$ (a, δ, e) , $T_i = 1\,500\,\mathrm{K}$ (z, ∂, e)

В данной статье нами рассмотрена задача определения погрешностей оценивания параметров ионосферной плазмы, получаемых с помощью метода НР. На основе разработанного алгоритма статистического моделирования решения обратной задачи рассеяния был проведен ряд исследований, результаты которых следующие.

Показано, что погрешность определения значений параметров ионосферной плазмы с помощью метода HP имеет приемлемые значения даже при низком отношении сигнал/шум (вплоть до q=0,1). При усреднении АКФ, соответствующем накоплению АКФ сигнала в течение 15 мин, и отношении сигнал/шум q=1 разброс оценок около их математического ожидания составлял не более 0,03 для $N(\operatorname{H}^+)/N$ и не более 150 К для T_i и T_e . Возникающие при решении обратной задачи рассеяния смещения оценок существенно увеличиваются при q<1. Наибольшие погрешности температуры ионов наблюдаются при $N(\operatorname{H}^+)/N<0.4$, а наибольшие погрешности температуры электронов и относительного содержания ионов H^+ – при $N(\operatorname{H}^+)/N\approx0.6$. С ростом отношения температур b погрешность определения параметров увеличивается.

Литература

- 1. Пуляев В. А., Дзюбанов Д. А., Домнин И. Ф. Расчёт параметров ионосферы в методе некогерентного рассеяния радиоволн: монография. Харьков: НТУ «ХПИ», 2010. 224 с.
- 2. Huuskonen A., Lehtinen M.S. The accuracy of incoherent scatter measurements: error estimates valid for high signal levels // Journal of Atmospheric and Terrestrial Physics, Vol. 58, No. 1. 1996. P. 453–463.
- 3. Gonzalez S. A., Sulzer M. P. Detection of He+ Layering in the topside ionosphere over Arecibo during equinox solar minimum condition // Geophysical research letters, Vol. 23, No. 18. 1996. P. 2509–2512.
- 4. Hysell D. L., Chau J. L., Huba J. D. Topside measurements at Jicamarca during solar minimum // Annales Geophysicae, No. 27. 2009. P. 427–439.

- 5. Богомаз А. В. Алгоритм оценки статистических погрешностей результатов решения обратной радиофизической задачи при наличии шумоподобных помех // Современные проблемы радиотехники и телекоммуникаций «РТ-2013»: материалы 9-й междунар. молодёжной научн.-техн. конф., Севастополь, 22–26 апреля 2013 г. 2013. С. 376.
- 6. Пуляев В. А., Богомаз А. В., Котов Д. В. Способ имитации смеси шумоподобного сигнала и помехи с заданными спектрами: пат. 42311 Украина. u200901462; заявл. 20.02.2009; опубл. 25.06.2009, Бюл. № 12.
- 7. Dougherty J. P., Farley D. T. A theory of incoherent scattering of radio waves by a plasma // Proc. Roy. Soc. 1960. Vol. A259. P. 79–99.
- 8. Богомаз А. В. Моделирование случайного сигнала с заданной спектральной плотностью мощности // Вестник НТУ «ХПИ». Автоматика и приборостроение. 2009. № 23. С. 29–32.
- 9. Пуляев В. А., Сокол Е. И., Богомаз А. В., Белозёров Д. П. Особенности решения прямой задачи рассеяния при расчёте параметров ионосферной плазмы // Всеукраинский межведомственный научнотехнический сборник «Радиотехника». 2010. № 160. С. 280–285.
- 10. Домнин И. Ф., Котов Д. В., Черногор Л. Ф. Оптимизация определения параметров ионосферной плазмы методом некогерентного рассеяния // Нелинейный мир. 2012. № 6. С. 380–386.
- 11. Кассандрова О. Н., Лебедев В. В. Обработка результатов наблюдений. М.: «Наука», Главная редакция физ.-мат. литературы, 1970. 104 с.

УДК 001.891.573

Лебедева Инна Викторовна, Лебедев Виктор Иванович

МАТЕМАТИЧЕСКИЕ МОДЕЛИ ФУНКЦИОНИРОВАНИЯ ПРЕДПРИЯТИЙ, УЧАСТВУЮЩИХ В ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ

В статье представлены модели развивающихся экономических предприятий с инновационной деятельностью в виде системы нелинейных дифференциальных уравнений. Рассмотрены регулярный и стохастический типы поведения экономической системы. Обсуждены оптимальные способы управления развитием предприятия с учётом инновационной деятельности.

Ключевые слова: нелинейные синергетические модели, регулярные и стохастические сценарии развития, инновационная деятельность, управление

Lebedeva Inna V., Lebedev Victor I. MATHEMATICAL MODELS OF FUNCTIONING OF THE ENTERPRISES PARTICIPATING IN THE INNOVATION ACTIVITY

Developing economic enterprise models with innovations in the manner of systems of the nonlinear differential equations are studied. Regular and stochastic behaviors of the economic systems are considered. Optimum ways of development management of enterprises with innovations are discussed.

Key words: economic enterprise synergetic models, regular and stochastic behaviors, development, innovations, management.

При изучении динамики макроэкономических моделей заранее полагают, что эта задача анализа является чрезвычайно сложной. При макроэкономическом анализе динамических процессов используют десятки связанных, зачастую нелинейных дифференциальных уравнений для важных экономических параметров. Это приводит, даже при современной компьютерной технике, к непреодолимым сложностям принципиального характера. Полагается, что в рыночной экономике, предприятия, социально-экономические системы являются открытыми и неравновесными. Обмен энтропией с окружением может приводить к её понижению в экономических системах, что ведёт к структурным изменениям и образованию новых форм организации и функционирования. В структуре поведения систем возникает хаос с последующей самоорганизацией новых оптимальных структур. При этом хаотическое поведение экономических параметров предприятий вблизи точек экономических катастроф зачастую генерируется не стохастическим экзогенным воздействием, а нелинейным характером эндогенных процессов. Такое поведение в нелинейной динамике описывают странными аттрак-