

УДК 622.7.002

Шелудько Геннадий Петрович, Гончаров Валерий Михайлович, Скориков Савва Викторович

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ РЕЗИНОВЫХ ФУТЕРОВОК ШАРОВЫХ МЕЛЬНИЦ В ПРОМЫШЛЕННОСТИ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

В статье рассмотрена разработанная теплостойкая резиновая футеровка шаровых мельниц, работающих в режиме сухого помола при повышенных температурах (до 140–160 °C); проведение сравнительных промышленных испытаний теплостойкой и стальной футеровки, показаны преимущества ее применения. Рассмотрены перспективы и эффективность непрерывного способа изготовления резиновой футеровки шаровых мельниц для измельчения абразивных материалов.

Ключевые слова: шаровые мельницы, теплостойкая резиновая футеровка, испытания, преимущества, перспективный способ изготовления.

Sheludko Gennady Petrovich, Goncharov Valery Mikhailovich, Skorikov Savva Viktorovich INCREASED EFFICIENCY OF BALL MILL RUBBER LININGS IN CONSTRUCTION MATERIAL PRODUCTION

The article provides a view on the newly developed heat-resistant rubber lining for mill balls employed under dry milling at higher temperatures (up to 140-160 oC). There have been comparative industrial trials carried out to test the heat-resistant and steel lining, and its advantages have been shown. There is also a view on the efficiency and the potential future production of rubber lining for ball mills employed to grind abrasive materials.

Key words: ball mills, heat-resistant rubber lining, trial, advantage, advantageous way of production.

Резиновая футеровка шаровых мельниц широко применяется в горнорудной, угольной, химической отраслях, а также в промышленности строительных материалов (цемент, силикатный кирпич, фаянсовые и керамические изделия и т. д.) [1–3]. Ее потребность составляет десятки тысяч тонн в год. Эффективность применения резиновой футеровки шаровых мельниц, работающих в режиме интенсивного ударно-абразивного изнашивания, заключается в повышении эксплуатационной надежности, снижении материалоемкости, энергоемкости, повышении коэффициента использования технологического оборудования, снижении трудоемкости монтажно-демонтажных работ, повышении охраны труда.

Футеровки, в зависимости от конструкции элементов влияют также на кинематику движения мелящей загрузки, на производительность мельниц и качество конечного продукта. В промышленности применяются различные профили металлических футеровочных плит: каскадный, волновой, ребристый, профиль Крюкова, ступенчатый, пазовый, брусчатый и другие. В зависимости от профиля и расположения элементов футеровки можно обеспечить различные кинематические режимы измельчения: каскадный, водопадный, или смешанный каскадно-водопадный [1, 2].

Однако в шаровых мельницах, работающих при производстве силикатного кирпича в режиме сухого измельчения при повышенных температурах (свыше 100–140 °C), применяется стальная футеровка. Попытки замены стальной футеровки из легированных сталей резиновой для помола не дали положительного результата, так как резко снизилась долговечность и эффективность ее применения.

Предварительный анализ условий эксплуатации шаровых мельниц сухого помола, работающих при повышенных температурах, указал на возникновение и реализацию различных видов изнашивания: абразивный, газоабразивный, изнашивание по незакрепленному и по закрепленному абразиву, усталостному, ударно-абразивному при проскальзывании и перекатывании.

В результате анализа специфических условий эксплуатации шаровых мельниц сухого помола при производстве силикатного кирпича, были определены и сформулированы основные требования к резинам в качестве футеровочного материала, работающего в условиях интенсивного ударно-абразивного изнашивания при повышенных температурах (100–140 °C) и динамического нагружения, которые для повышения работоспособности и надежности, должны обладать комплексом упругогистерезисных, усталостнопрочностных, триботехнических свойств, термоокислительной стабильностью и теплопроводностью в условиях длительного динамического нагружения.

С учетом специфических условий эксплуатации шаровых мельниц сухого помола при производстве силикатного кирпича разработана теплостойкая резиновая футеровка на основе синтетических эластомеров для работы в условиях интенсивного ударно-абразивного изнашивания при повышенных температурах (до 140–160 °C). Резиновые смеси готовились в смесителях высокого давления по двухстадийному режиму смешения с использованием раздельного введения активных наполнителей и мягчителей. В качестве вулканизующей системы использованы сера и сульфенамидные ускорители, обеспечивающие высокие технологические и технические свойства резин.

Резиновая футеровка изготавливалась способом двухэлементного исполнения: лифтер, плита с шагом крепления 314 мм. Высота лифтеров составляла 115 мм, толщина футеровочных плит — 85 мм. Изготовление проводилось формовым способом на действующем оборудовании с использованием отечественных материалов. На заводе резинотехнических изделий формовым способом была изготовлена опытная теплостойкая резиновая футеровка. С учетом различной интенсивности износа элементов резиновой футеровки было изготовлено два комплекта лифтеров и один комплект плит.

В состав резиновой футеровки входят 80 лифтеров и 40 плит. Общий вес теплостойкой футеровки составил три тонны. Монтаж теплостойкой футеровки проводился в шаровой мельнице СМ-1456 (диаметр - 1,5 м, длина - 5,6 м) на заводе силикатного кирпича. Оснастка для крепления элементов резиновой футеровки поставлялась предприятием «Строммашина» (г. Самара). Шаг крепления резиновой футеровки к корпусу шаровой мельницы выбран кратным π , т. е 314 мм. Для этого на корпусе мельницы по внешнему диаметру была проведена разметка и просверлены отверстия под болты. Монтаж проводила бригада из двух человек.

В процессе промышленных испытаний теплостойкой резиновой футеровки изучались надежность крепления футеровки, интенсивность износа элементов футеровки в камерах мельницы в зависимости от мелющей загрузки, изменение механических свойств резин в процессе эксплуатации, производительность мельницы, тонкость помола, расход мелющих тел, тепловой режим работы мельниц, сравнительные акустические характеристики.

При испытаниях резиновой футеровки установлено следующее:

- применяемая монтажная оснастка обеспечивает эксплуатационную надежность отрывов и разрушений элементов футеровки. Протечек через отверстия крепления в корпусе не установлено;
- производительность шаровой мельницы с резиновой футеровкой практически не изменилась;
- интенсивность износа элементов резиновой футеровки в первой камере на 20–30 % выше, чем во второй. При этом следует отметить, что в первой камере преобладает ударно-абразивный механизм изнашивания, а во второй камере – усталостный со специфическим рисунком износа при повышенной температуре.

Неразрушающие методы испытаний подтвердили изменение физико-механических свойств в процессе эксплуатации: твердость лифтеров и плит в зоне трения и ударно-контактного взаимодействия с мелющей загрузкой и абразивной средой повысилась с 70 до 87–90 единиц, а в зоне контакта с корпусом мельницы – с 70 до 78 единиц. Сопротивление статическому проколу в зоне интенсивного контактного взаимодействия с незакрепленным абразивной средой повысилось на 40–50 %.

Снижение расхода мелющей загрузки в 2–3 раза на 1тн сырьевой абразивной среды обусловлено изменением механизма и времени контактного взаимодействия цильпебса и шаров с элементами резиновой футеровки, при этом расколотых мелющих тел не обнаружено.

Повышение температуры сырьевой смеси на выходе из мельницы с резиновой футеровкой на 25-30 °C обусловлено изменением теплового баланса эксплуатации, так как резина является хорошим теплоизолятором, что подтверждается температурой корпуса мельницы с резиновой футеровкой, которая не превышает 45-50 °C.

Снижение шума работающей мельницы с резиновой футеровкой — до санитарных норм (85 Дб). Акустические характеристики мельницы были значительно ниже в случае установки торцевых поверхностей и межкамерной перегородки в гуммированном исполнении.

Возникновение и возможность использования эффекта самофутерования элементов резиновой футеровки мелющей загрузкой, который заключается в следующем: в процессе износа мелющих тел, появления некоторых зазоров между лифтерами и плитами и их деформации происходит заклинивание и удержание изношенных шаров и цильпебса, и создаются условия возникновения нового типа футеровки «резина — металл».

Промышленные испытания теплостойкой резиновой и стальной футеровки проводились в течение 2,5 лет и приведены в таблице.

Длительные промышленные испытания теплостойкой резиновой футеровки показали успешную возможность замены стальной футеровки из легированных сталей износостойкими резинами на основе синтетических эластомеров и подтвердили следующие технико-экономические преимущества: снижение материалоемкости в 3—4 раза, снижение трудоемкости монтажно-демонтажных работ, повышение коэффициента использования оборудования, повышение экологических условий труда.

Таблица Сравнительные испытания теплостойкой резиновой и стальной футеровки в шаровой мельнице СМ-1456, работающей в режиме сухого помола

№ п/п	Наименование показателей	Ед. изм.	Стальная футеровка	Резиновая футеровка
1	Вес футеровки	TH	8,0	1,5
2	Производительность	тн/ час	4,5–5,0	4,5–5,0
3	Тип и дисперсность материала поступающего в мельницу	MM	песчано- известковая смесь 1:1	песчано- известковая смесь 1:1
4	Потребляемая мощность	кВт	62	52
5	Тонкость помола на сите 063	%	0,1-0,8	0,1-1,2
6	Ассортимент мелющей загрузки: 1 камера, шары Ø 40 мм Ø 60 мм Ø 70 мм 2 камера, цильбепс	ТН	2,0 2,0 1,0 6,0	2,0 2,0 1,0 6,0
7	Расход мелющих тел на 1тн готового продукта	КГ	0,7	0,2
8	Температура материала: на входе на выходе	°C	70–105 80–103	70–105 105–126
9	Максимальный шум мельницы	дБ	105-107	80–83
10	Долговечность футеровки	год	2,5	2,7

Однако формовой способ изготовления резиновой футеровки, который в основном применяется на предприятиях резинотехнических изделий, имеет значительные недостатки [3, 4], которые необходимо рассматривать комплексно и устранять их на различных стадиях разработки состава, технологии изготовления и эксплуатации, а именно:

- на стадии проектирования: высокая трудоемкость проектирования и изготовления пресс-форм, большой ассортимент пресс-форм для различных типоразмеров мельниц, консервативность профиля футеровок, ограниченность длины элементов футеровки (не более 1500 мм);
- на стадии изготовления: низкая производительность формового способа изготовления, высокая энергоемкость технологического процесса, высокий процент отходов (2–4 %), высокая трудоемкость смены пресс-форм, низкий уровень механизации и автоматизации технологического процесса;
- на стадии эксплуатации: сравнительно высокая стоимость резиновой футеровки, ограничения применения резиновой футеровки на первых стадиях измельчения, температурный предел эксплуатации не более 80 °C, реализация эффекта самофутерования резиновой футеровки мелющей загрузкой.

Анализ применения резиновой футеровки в качестве футеровочного материала шаровых мельниц в различных областях промышленности позволил обосновать непрерывный способ изготовления унифицированной резиновой футеровки и выпустить опытную партию неформовой футеровки. Поточный способ изготовления резиновой футеровки заключается в ее изготовлении с заданным комплексом технологических и физико-механических свойств, экструзии сырых резиновых смесей на червячных машинах через профилирующие планки с предварительным вакуумированием и последующей непрерывной вулканизацией, исключающий многократные энергоемкие процессы изготовления полуфабрикатов и вулканизацию. Неформовой способ изготовления резиновой футеровки предъявляет повышенные требования к таким технологическим свойствам, как шприцуемость, каркасность смеси, гладкость поверхности, стойкость к подвулканизации, исключение пористости, малая усадка, стабильность профиля.

Отработка и оптимизация производственных профилирующих шайб проводилось на шприц-машине горячего питания МЧТ-200. Температура резиновых смесей на выходе профиля элементов футеровки составляла 120–125 °C, скорость профилирования варьировалась в пределах 0,5–3 м/мин. В процессе экструзии элементов резиновой футеровки изменялись габаритные размеры, шероховатость поверхности, каркасность и стабильность профиля и его монолитность.

С учетом особенности технологического оборудования разработаны профилирующие планки для изготовления двухэлементной, состоящей из лифтера и плиты, и одноэлементной, сочетающей лифтер и плиту. Универсальность обеих типов футеровки заключается в том, что шаг крепления элементов футеровки к корпусу мельниц кратен (314 мм) для всех их типоразмеров. Размеры элементов резиновой футеровки их профили способ крепления проанализированы с точки зрения использования эффекта самофутерования мелющей загрузкой. Изготовлена опытная партия элементов резиновой футеровки общим весом 2,0 тн для второй камеры шаровой мельницы с диаметром 2 м и длиной 10 м с шагом крепления 314 мм, заменяющая 8 тн стальной футеровки.

После вулканизации в автоклаве элементы неформовой резиновой футеровки имели следующие габаритные размеры соответственно: по ширине – лифтеры 154–157 мм, плиты –145–147 мм, по высоте: лифтеры – 118–123 мм, плиты – 99–101 мм. После вулканизации в автоклаве неразрушающими методами контроля были проведены следующие испытания: твердость, эластичность, стойкость к статическому проколу. В поперечном сечении элементов резиновой футеровки составляла, соответственно: твердость – 58–60, эластичность – 37–39, стойкость к статическому проколу – 480–550 МПа. Аналогичные результаты получены при испытании стандартных образцов, изготовленных прессовым способом, что указывает на высокую степень вулканизации по всему профилю элементов неформовой футеровки, отсутствие реверсии вулканизации и сохранение.

Значительным преимуществом неформового способа изготовления резиновой футеровки является возможность создания и управления эффектом самофутерования элементов футеровки шарами и цильпебсом за счет дифференцированного изменения зазоров (в пределах 2–5 мм) между лифтерами и плитами в процессе шприцевания с изменением технологических параметров: температуру, скорость экструзии, степень вытяжки полуфабриката.

Выводы. Разработаны состав, технология изготовления теплостойкой резиновой футеровки шаровых мельниц, работающих в режиме сухого помола при повышенных температурах (100–140 °C).

Проведены сравнительные промышленные испытания теплостойкой и стальной футеровки в мельнице СМ-1456 при производстве силикатного кирпича. Показаны эффективность и технико-экономические преимущества применения износостойких резин в качестве футеровочного материала шаровых мельниц.

Обоснована необходимость и целесообразность освоения непрерывного способа изготовления неформовой резиновой футеровки шаровых мельниц сухого и мокрого измельчения абразивных материалов, обеспечивающего повышение производительности изготовления в 2–3 раза, снижение энергоемкости и материалоемкости технологического процесса, исключение разработки множества сложных пресс-форм, мобильность профилей элементов резиновой футеровки, создание условий и реализацию эффекта самофутерования с повышением триботехнической надежности и долговечности, снижение цены неформовой футеровки на 20–30 %.

Литература

- 1. Тарасенко А. А., Чижик Е. Ф., Взоров А. А. и др. Защитные футеровки и покрытия горно-обогатительного оборудования. М.: Недра, 1985. 204 с.
- 2. Повышение износостойкости горно-обогатительного оборудования / Н. С. Пенкин, Е. П. Капралов, П. В. Маляров и др. / под ред. Н. С. Пенкина. М.: Недра. 1992. 265 с.
- 3. Попов А. В., Соломатин А. В. Непрерывные процессы производства неформовых профильных изделий. М.: Химия. 1977. 143 с.
 - 4. Попов А. В. Непрерывное производство резинотехнических изделий. М.: ЦНИИТЭнефтехим. 1976. 86 с.